Kamis, 22 September 2016

AI (Artificial Intelligence)

Artificial Intelligence atau AI adalah kemampuan dari sebuah komputer untuk berfikir seperti manusia bahkan lebih baik dibandingkan manusia . Dalam bahasa Indonesia Artificial Inteligence atau AI artinya Kecerdasan Buatan , biasanya sebuah sistem AI memiliki kemampuan untuk memperoleh informasi baru yang akan dikumpulkan agar sistem AI menjadi lebih cerdas lagi . Artificial Intelligence biasanya berbentuk mesin atau software , tujuan dari AI ini adalah untuk menggantikan peran manusia agar sebuah pekerjaan atau pemecahan suatu masalah dapat lebih mudah dan efisien .

Sejarah Artificial Intelligence Dunia

Sebelum memulai pembahasan mendalam tentang Kecerdasan Buatan ini , mari kita kenali dulu sejarahnya . AI sebenarnya muncul dan mulai diyakini keberadaannya pertama kali pada kisah mitologi Yunani dan peradaban Mesir Kuno .
Namun sistem kecerdasan buatan ini mulai efektif di era 1950 an , dengan dimulainya pengembangan komputer elektronik pada tahun 1941 dan pengembangan stored program pada tahun 1949 maka muncul dorongan untuk mempelajari AI lebih jauh .
Pada tahun 1951 , untuk pertama kalinya terciptalah sebuah sistem kecerdasan buatan yang benar-benar bekerja , dengan menggunakan komputer Ferranti Mark 1 , Christopher Strachey dan Dietrich Prinz berhasil membuat sebuah permainan catur melawan komputer. Jika kalian bertanya , siapakah pencetus Artificial Intelligence , maka jawabannya adalah John McCarthy yang disebut sebagai bapak artificial intelligence dunia karena pada tahun 1956 untuk pertama kalinya kata ” artificial intelligence ” dikenalkan pada Dartmouth Conference .

4 Dasar Kategori di Konsep dasar Ai(Kecerdasan Buatan)


1. Acting Humanly

Acting humanly ialah system yang melakukan pendekatan dengan menirukan tingkah laku seperti manusia yang dikenalkan pada tahun 1950 degan cara kerja pengujian melalui teletype yaitu jika penguji (integrator) tidak dapat membedakan yang mengintrogasai antara manusia dan computer maka computer tersebut dikatakan lolos(menjadi kecerdasan buatan).

2. Thinking Humanly

Yaitu system yang dilakukan dengan cara intropeksi yaitu penangkapan pemikiran psikologis
Manusia pada computer,hal ini sering diujikan dengan neuron ke neuron lainnya atau sel otak dengan sel otak lainnya cara pembelajarannya yaitu melalui experiment-experimen.

3. Thinking Rationaly

Ini merupakn system yang sangat sulit ,karena sering terjadi kesalah dala, prinsip dan prakteknya,system ini dikenal dengan penalaran komputasi.

4. Actng Rationaly

Yaitu system yang melakukan aksi dengan cara menciptakan suatu robotika cerdas yang menggantikan tugas manusia.

Contoh-contoh Aplikasi AI :


a. Bidang Pertanian

Pada bidang Pertanian, dibuat ES untuk memprediksi kerusakan pada jagung yang disebabkan oleh ulat hitam dan memberikan konsultasi untuk mendiagnosa kerusakan pada kacang kedelai dengan menggunakan pengetahuan tentang gejala kerusakan dan lingkungan tanaman.

b. Bidang Kimia

Pada bidang Kimia, dibuat ES untuk menganalisa struktur DNA dari pembatasan segmentasi data enzim dengan menggunakan paradigmagenerate & test.

c. Bidang Sistem Komputer

Pada bidang Sistem Komputer, dibuat ES untuk membantu operator komputer untuk monitoring dan mengontrol MVS (multiple virtual storage) sistem operasi pada komputer mainframe IBM.

d. Bidang Elektronik

Pada bidang Elektronik, dibuat ES untuk mengidentifikasi masalah pada jaringan telepon, ES untuk simulasi perancangan DLC (digital logic circuits) dan mengajari pelajar bagaimana cara mengatasi masalah pada sirkuit elektronik.

e. Bidang Hukum

Pada bidang Hukum, dibuat ES untuk membantu para auditor profesional dalam mengevaluasi potensi kegagalan pinjaman klien berdasarkan sejarah pinjaman, status ekonomi, kondisi piutang.

f. Bidang Militer

Pada bidang Militer, dibuat ES untuk membantu menganalisa perkiraan situasi pertempuran, memberikan interpretasi taktik laporan sensor intelijen dan memberikan rekomendasi alokasi senjata kepada komandan militer pada saat situasi perang.

Di atas merupakan beberapa contoh dari AI yang sudah diaplikasikan dalam beberapa bidang. Masih banyak aplikas-aplikasi AI yang tidak mungkin disebutkan semua di sini. Beberapa contoh di atas sudah dapat memberikan gambaran bahwa cakupan Artificial Intelligence (AI) / Kecerdasan Buatan tidak hanya dibidang ilmu komputer tetapi bisa bekerja sama dengan bidang lain untuk menciptakan sebuah sistem yang saling mendukung.

FUZZY LOGIC

FUZZY LOGIC (LOGIKA FUZZY)


A. Asal Mula Fuzzy Logic
Konsep Fuzzy Logic diperkenalkan oleh Prof. Lotfi Zadeh dari Universitas California di Berkeley pada 1965, dan dipresentasikan bukan sebagai suatu metodologi control, tetapi sebagai suatu cara pemrosesan data dengan memperkenankan penggunaan partial set membership dibanding crisp set membership atau non-membership. Pendekatan pada set teori ini tidak diaplikasikan pada system control sampai tahun 70an karena kemampuan computer yang tidak cukup pada saat itu. Profesor Zadeh berpikir bahwa orang tidak membutuhkan kepastian, masukan informasi numeric, dan belum mampu terhadap control adaptif yang tinggi. Jika pengendali umpan balik dapat di program untuk menerima derau, masukan yang tidak tepat, mereka akan menjadi lebih efektif dan mengkin akan menjadi lebih mudah untuk diimplementasikan. Sayangnya, produsen AS belum begitu cepat untuk merangkul teknologi ini sementara Eropa dan Jepang telah agresif produk bangunan nyata di sekitarnya.
B. Apa itu Fuzzy Logic
Fuzzy Logic adalah metodologi pemecahan masalah  dengan beribu – ribu aplikasi dalam pengendali yang tersimpan dan pemrosesan informasi.Cocokuntuk diimplementasikan pada sistem yang sederhana, kecil, tertanam pada mikro controller, PC multi-channel atau workstation berbasis akuisisi data dan control sistem. Fuzzy logic menyediakan cara sederhana untuk menggambarkan kesimpulan pasti dari informasi yang ambigu, samar -samar, atau tidak tepat. Sedikit banyak, fuzzy logic menyerupai pembuatan keputusan pada manusia dengan kemampuannya untuk bekerja dari data yang ditafsirkan dan mencari solusi yang tepat. Fuzzy logic pada dasarnya merupakan logika bernilai banyak (multivalued logic) yang dapat mendefinisikan nilai diantara keadaan konvensional seperti ya atau tidak, benar atau salah, hitam atau putih, dan sebagainya. Penalaran fuzzy menyediakan cara untuk memahami kinerja dari system dengan cara menilai input dan output system dari hasil pengamatan.

C. Alasan Menggunakan Fuzzy Logic
Fuzzy logic menawarkan beberapa karakteristik unik yang menjadikannya suatu pilihan yang baik untuk banyak masalah control. Karakteristik tersebut antara lain :
  1. Sudah menjadi sifatnya yang kuat selama tidak membutuhkan ketepatan, input yang bebas derau, dan dapat diprogram untuk gagal dengan aman jika sensor arus balik dimatikan atau rusak. Control output adalah fungsi control halus meskipun jarak variasi input yang cukup besar.
  2. Selama fuzzy logic controller memproses aturan – aturan yang dibuat user yang memerintah system control target, ia dapat dimodifikasi dengan mudah untuk meningkatkan atau mengubah secara drastis performa system. Sensor yang baru dapat dengan mudah digabungkan kedalam system secara sederhana dengan menghasilkan aturan memerintah yang sesuai.
  3. Fuzzy logic tidak terbatas pada sedikit masukan umpan-balik dan satu atau dua output control, tidak juga penting untuk menilai atau menghitung parameter rata –  rata perubahan dengan tujuan agar ia diimplementasikan. Sensor data yang menyediakan  beberapa indikasi untuk aksi dan reaksi system sudah cukup. Hal ini memungkinkan sensor menjadi murah dan tidak tepat sehingga menghemat biaya system keseluruhan dan kompleksitas rendah.
  4. Karena operasi – operasi yang berbasiskan aturan, jumlah input yang masuk akal dapat diproses ( 1 sampai 8 atau lebih ) dan  banyak output ( 1 sampai 4 atau lebih ) dihasilkan, walaupun pendefinisian rulebase secara cepat menjadi rumit jika terlalu banyak input dan output dipilih untuk implementasi tunggal selama pendefinisian rules(aturan), hubungan timbal baliknya juga harus didefinisikan. Akan lebih baik jika memecah system kedalam potongan – potongan yang lebih kecil dan menggunakan fuzzy logic controllers yang lebih kecil untuk didistribusikan pada system, masing – masing dengan tanggung jawab yang lebih terbatas.
  5. Fuzzy Logic dapat mengontrol system nonlinier yang akan sulit atau tidak mungkin untuk dimodelkan secara matematis. Hal ini membuka pintu bagi system control yang secara normal dianggap tidak mungkin untuk otomatisasi.
D. Bagaimana Menggunakan Fuzzy Logic
Adapun langkah – langkah penggunaan fuzzy logic adalah sebagai berikut:
  • Definisikan obyektif dan criteria control :
  1. Apa yang kita coba control ?
  2. Apa yang harus kita lakukan untuk mengontrol system ?
  3. Respon seperti apa yang kita butuhkan ?
  4. Apa mode kegagalan system yang mungkin ?
  • Tentukan hubungan antara input dan output serta memilih jumlah minimum variable input pada mesin fuzzy logic(secara khusus error dan rata – rata perubahan error).
  • Dengan menggunakan struktur berbasis aturan dari fuzzy logic, jabarkan permasalahan control ke dalam aturan IF X AND Y THEN Z yang mendefinisikan respon output system yang diinginkan untuk kondisi input system yang diberikan. Jumlah dan kompleksitas dari rules bergantung pada jumlah parameter input yang diproses dan jumlah variable fuzzy yang bekerjasama dengan tiap – tiap parameter. Jika mungkin, gunakan setidaknya satu variable dan turunan waktunya. Walaupun mungkin untuk menggunakan sebuah parameter tunggal yang error saat itu juga tanpa mengetahui rata – rata perubahannya, hal ini melumpuhkan kemampuan system untuk meminamalisasi keterlampauan untuk sebuah tingkat input.
  • Buat fungsi keanggotaan yang menjelaskan nilai input atau output yang digunakan didalam rules.
  • Buat rutinitas proses awal dan akhir yang penting jika diimplementasikan dalam software, sebaliknya program rules kedalam mesin hardware fuzzy logic.
  • Test system, evaluasi hasil, atur rules dan fungsi keanggotaan, dan retest sampai hasil yang memuaskan didapat.


salah satu contoh penerapan dalam kehidupan adalah :

1. pengaturan lampu lalu lintas
2. pengaturan suhu suatu ruangan
3. pengaturan sistem penggajian karyawan

ARTFICIAL NEURAL NETWORK

                     Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan.

Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi. Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.




Konsep Neural Network

                       Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.

ada beberapa bagian dari otak manusia yang berfungsi sebagai :
  1. Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
  2. Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain
  3. Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.
PROSES :

                     Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).



Struktur Neural Network

             Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processingNeural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.

Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilaithreshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.
ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.

CONTOH PENERAPAN PADA KEHIDUPAN NYATA :

1. pemetaan pola 
2. radar
3. pengambilan keputusan dalam sebuah video game (chess/catur)